Student Activity	Class
In this activity, you will examine the family of exponential functions of the form $f(x) = c \cdot b^{x+a}$ where a, b , and c are parameters. You will use the Transformation App (Transfrm) on your handheld to manipulate these parameters in Questions 1 - 3.	NORMAL FLOAT AUTO REAL RADIAN MP TRANSFORMATION GRAPHING APP Plot1 Plot2 Plot3 QUIT-APP MIY1EC*B $^{X+A}$ MIY2= NY3= NY4= NY5= NY6= NY7= NY8=

The parameter *b* is the base of the exponential function and b > 0, $b \neq 1$. Using the transformation app, change the value of a parameter by entering the equation for each question into Y₁ and Y₂, and pressing the arrow keys to manipulate each parameter of the function on the graph.

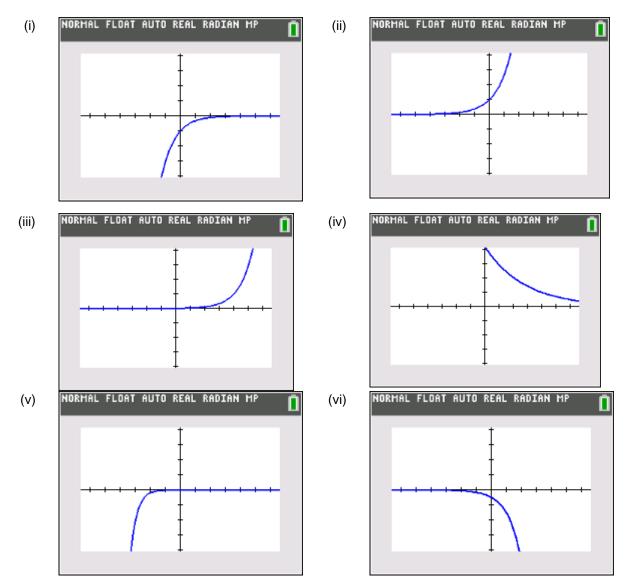
Question 1

- 1. Graph the following function: $Y_1 = B^x$. Press the arrows to change the value of *B*, and observe the changes in the graph of Y_1 .
 - a. Explain why for every value of *B* the graph of Y_1 passes through the point (0,1).
 - b. For B > 1, describe the graph of $Y_1 = B^x$.
 - c. For 0 < B < 1, describe the graph of $Y_1 = B^x$.
 - d. Find the domain and range of function $Y_1 = B^x$ for all possible values of *B*.
 - e. Does the graph of $Y_1 = B^x$ intersect the *x*-axis? Explain why or why not.

Question 2

2. Graph the following function: $Y_2 = B^{x+A}$. For a specific value of *B*, click the arrows to change the value of *A*, and observe the changes in the graph of Y_2 . Repeat this process for other values of *B*. Describe the effect of the parameter *A* on the graph of $Y_2 = C \cdot B^{x+A}$. Discuss the effects of both positive and negative values of *A*.

Question 3


3. Graph the following function: $Y_2 = C \cdot B^{x+A}$. For specific values of *A* and *B*, click the arrows to change the value of *C*, and observe the changes in the graph of Y_1 . Describe the effect of the parameter *C* on the graph of $Y_2 = C \cdot B^{x+A}$. Discuss the effects of both positive and negative values of *C*.

Question 4

- 4. Turn off the Transformation App by selecting Quit-App on the y = screen. Graph each function given and answer the following questions.
 - a. Display the graphs of $Y_1 = 3^{x+2}$ and $Y_2 = 9 \cdot 3^x$.
 - (i) How is the graph of Y_2 related to the graph of Y_1 ?
 - (ii) Use the properties of exponents to justify your answer.
 - b. Display the graph of $Y_1 = 3^{x-2}$ and $Y_2 = \left(\frac{1}{9}\right) \cdot 3^x$.
 - (i) How is the graph of Y_2 related to the graph of Y_1 ?
 - (ii) Use the properties of exponents to justify your answer.
 - c. Use your answers to parts (a) and (b) to explain the relationship between a horizontal translation and a vertical dilation of the graph of an exponential function.

Question 5

- 5. Without using your calculator, match each equation with its corresponding graph. Check your answers by graphing each function on your calculator.
 - (a) $f(x) = 3^{x-4}$ (b) $f(x) = -\left(\frac{1}{3}\right)^x$ (c) $f(x) = (0.7)^{x-4}$ (d) $f(x) = -2(0.1)^{x+3}$ (e) $f(x) = e^x$ (f) $f(x) = -\left(\frac{1}{2}\right) \cdot \pi^x$
- Note: The function in part (e) is the "natural" exponential function and involves the number $e \approx 2.71828...$

